Stirling Numbers of the Second Kind
نویسنده
چکیده
The papers [18], [9], [21], [14], [23], [6], [24], [2], [3], [8], [10], [1], [22], [7], [11], [20], [16], [19], [4], [5], [13], [12], [17], and [15] provide the terminology and notation for this paper. For simplicity, we adopt the following convention: k, l, m, n, i, j denote natural numbers, K, N denote non empty subsets of N, K1, N1, M1 denote subsets of N, and X, Y denote sets. Let us consider k. Then {k} is a subset of N. Let us consider l. Then {k, l} is a subset of N. Let us consider m. Then {k, l,m} is a non empty subset of N. The following propositions are true: (1) minN = minN. (2) min(minK,minN) = min(K ∪ N). (3) min(minK1,min N1) ≤ min (K1 ∪ N1).
منابع مشابه
Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...
متن کاملStirling Numbers and Generalized Zagreb Indices
We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.
متن کاملStirling number of the fourth kind and lucky partitions of a finite set
The concept of Lucky k-polynomials and in particular Lucky χ-polynomials was recently introduced. This paper introduces Stirling number of the fourth kind and Lucky partitions of a finite set in order to determine either the Lucky k- or Lucky χ-polynomial of a graph. The integer partitions influence Stirling partitions of the second kind.
متن کاملq-Stirling numbers: A new view
We show the classical q-Stirling numbers of the second kind can be expressed more compactly as a pair of statistics on a subset of restricted growth words. The resulting expressions are polynomials in q and 1+q. We extend this enumerative result via a decomposition of a new poset Π(n, k) which we call the Stirling poset of the second kind. Its rank generating function is the q-Stirling number S...
متن کاملStirling numbers of the second kind and Bell numbers for graphs
Stirling numbers of the second kind and Bell numbers for graphs were defined by Duncan and Peele in 2009. In a previous paper, one of us, jointly with Nyul, extended the known results for these special numbers by giving new identities, and provided a list of explicit expressions for Stirling numbers of the second kind and Bell numbers for particular graphs. In this work we introduce q-Stirling ...
متن کاملA New Formula for the Bernoulli Numbers of the Second Kind in Terms of the Stirling Numbers of the First Kind
and that the Bernoulli numbers of the second kind bn for n > 0 may be generated by x ln(1+x) = ∑ ∞ n=0 bnx . In combinatorics, the signed Stirling number of the first kind s(n, k) may be defined such that the number of permutations of n elements which contain exactly k permutation cycles is the nonnegative number |s(n, k)| = (−1)s(n, k). The Bernoulli numbers of the second kind bn are also call...
متن کامل